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Abstract. A new probabilistic mortality forecasting approach is introduced that unlike the Lee-
Carter Method (and its variants) is directly linked  to the fundamental demographic equation, the 
cornerstone of demographic theory. This is an important consideration in developing accurate 
forecasts. Because it forecasts “years lived,” this new approach directly yields life expectancy 
and a corresponding future life table, which is not the case with the Lee-Carter Method and its 
variants. In an ex post facto evaluation using Estonian data from the Human Mortality Database, 
the new approach was found to provide accurate forecasts of “years lived by age” (nLx) both in 
terms of point and interval measures over a 20 year period. Probabilistic nLx forecasts for Estonia 
are then provided, the results are discussed, and the next steps in evaluating this approach are 
suggested. 
 
Background. Mortality Forecasting is an important activity. It is used in the preparation of 

population forecasts based on the cohort component (CCM) method (Smith, Tayman, and 

Swanson, 2013: 61-72), the development of social welfare, annuity and pension products (Lee and 

Miller, 2001; Booth and Tickle, 2008; Haberman and Renshaw, 2011; Huang, Maller, and Ning, 

2020; Rabbi and Mazzuco, 2020; Shang, Booth, and Hyndman, 2011; Tabeau, Van Den Berg Jeths, 

and Heathcote, 2001) and epidemiological/health research (Andrade, Camarda, and Arolas, 2025; 

Swanson, Bryan, and Chow, 2020; Booth and Tickle, 2008).  

The Lee-Carter approach to forecasting mortality was introduced in 1992 (Lee and Carter, 

1992) and along with its refinements and variants is arguably the most widely used approach in 

the world (Booth and Tickle, 2008; Rabbi and Mazzuco, 2020; Basellini, Camarda, and Booth, 

2023). As observed by Basellini, Camarda, and Booth (2023: 1034), it is useful to examine  the 

Lee-Carter approach in terms of two aspects, the model and the method. The model is a functional 

form for age-specific mortality (age-specific death rates, ASDRs) and the method consists of a 

series of steps to estimate the model and fit a time series model to the time index, along with 

specific adjustment and estimation procedures. Both the model and the method are  essentially 

mathematical fitting procedures and have no direct relationship to the dynamics of population 

change and the components of those change, one of which is obviously mortality.  Moreover, in 

order to generate a forecast of life expectancy and a corresponding life table, the Lee-Carter 
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Method and its variants require that the ASDRs be turned into a life table (e.g., Fergany’s method 

(Fergany, 1971)  and the Keyfitz-Frauenthal method (Kintner, 2004: 314-315)). 

This paper introduces a new method of mortality forecasting by showing  how measures 

of uncertainty from a standard time series model, “Auto Regressive Integrated Moving Average” 

(“ARIMA,” Box and Jenkins, 1976), can be applied to a  population projection based on the 

Hamilton-Perry Method (“H-P,” Baker et al., 2017) that generates “years lived” by age  (nLx) and 

which also includes Total years lived (T0) and life expectancy at birth (e0) as found in an abridged 

period life table. From the perspective of formal demography, this is a forecast of the age 

distribution and size of the stationary population associated with the mortality and the age structure 

of a given population (see, e.g., Ryder, 1975; Rao and Carey, 2015; Swanson and Tedrow, 2021).   

The measures of forecast uncertainty are relatively easy to calculate and meet several 

important criteria used by demographers who routinely generate forecasts, including utility 

(Tayman and Swanson, 1996) as well as face validity, plausibility, production cost, timeliness, ease 

of application and ease of explanation (McNown, Rogers, and Little, 1995; Smith, Tayman, and 

Swanson, 2013: 302-315). Unlike the Lee-Carter method and its corresponding “principal 

components” variants (Booth and Tickle, 2008; Lee and Carter, 1992; Lee and Miller, 2001; Shang, 

Booth, and Hyndman, 2011) this approach, given three major constraints (described later), links 

the probabilistic forecast uncertainty to the fundamental demographic equation, the cornerstone of 

demographic theory. In addition to being a potential contribution to formal demography, this is an 

important consideration in developing accurate forecasts (Swanson, et al. 2023). Also, unlike the 

Lee-Carter method and its variants, this new approach directly yields life expectancy and a 

corresponding future life table because it directly forecasts “years lived” by age (nLx). An ex post 

facto evaluation of the accuracy of the method is conducted in the form of a case study using 
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Estonian data found at the Human Mortality Data Base (HMD)  and an example set of  forecasts  

using current data is provided for Estonia. 

Data.  We selected Estonia for this case study mainly for two reasons. First, its population is small: 

As of 1 January 2025, Statistics Estonia (2025) shows it as 1,369,995.  We wanted a small 

population in this case study because our experience in working with large and small populations 

suggested that if the evaluation of our proposed method shows that it works well in a small 

population, it is, with some caveats (found in the “Evaluation” and “Discussion” sections), likely 

to work not only work in other small populations but also in large populations. Second, its data are 

of high quality and found in HMD (2025), which is where we obtained annual nLx data from 1959 

to 2024 that were organized in such a manner that made it easy to assemble into 18 age groups (0-

4, 5-9, 10-14,…,75-79, 80-84, and 85+). We also computed the ratio nLx/42,388, where 42,288 is 

the land area of Estonia (km2) so that we had  annual nLx “density” values for each of the 18 age 

groups from 1959 to 2024.We discuss why we computed these density values in the “Transferring 

Uncertainty” section. 

Method. We employ the Hamilton-Perry (H-P) method (Baker et al., 2017), which computes 

cohort change ratios (CCRs) using two counts of the age-structure (nLx) in question, typically five 

or ten years apart, which directly capture age-specific population dynamics.  Before turning to a 

discussion of the probabilistic approach we use (which is followed by a description of our input 

data and the projection results), it is helpful to note that the H-P method is algebraically equivalent 

to the fundamental demographic equation and therefore grounded in demographic theory (Baker 

et al., 2017: 251-252),. Barring unforeseeable catastrophes and other events that have very low 

probabilities of occurring (Taleb, 2010), as noted earlier, the closer one comes to having accurate 

data embedded in a method that is grounded in demographic theory, the more accurate a population 
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projection method will likely be (Swanson et al., 2023), a dictum that one could reasonably expect 

to apply to forecasting nLx. 

There are three components of change in a population: mortality, fertility, and migration. 

The overall growth or decline of a population is determined by the interplay among these three 

components. The exact nature of this interplay can be formalized in the fundamental demographic 

equation: 

Pl – Pb = B – D + IM – OM,            [1] 

Where Pl is the population at the end of the time period; Pb is the population at the beginning of 

the time period; and B, D, IM, and OM are the number of births, deaths, in-migrants, and out-

migrants during the time period, respectively. The difference between the number of births and the 

number of deaths is called natural change (B – D); it represents population growth coming from 

within the population itself. It may be either positive or negative, depending on whether births 

exceed deaths or deaths exceed births. The difference between the number of in-migrants and the 

number of out-migrants is called net migration (IM – OM); it represents population growth coming 

from the movement of people into and out of the area. It may be either positive or negative, 

depending on whether in-migrants exceed out-migrants or out-migrants exceed in-migrants. In 

cases where IM and OM do not occur (e.g., the world as a whole, the stationary population that is 

found in a life table), these elements can be omitted from the fundamental population equation. 

The fundamental demographic equation can also be extended to apply to age groups, age-

gender groups, and age-gender-race groups, as well as age-gender-ethnicity groups. This type of 

extension forms the logical basis of the equation and can be used to project a population into the 

future by age, age and gender, or by age, gender, and race. Once launched, these components 
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(which are frequently modified as the projection moves into the future based on assumptions about 

their direction) are applied to the resulting age-gender structure at each cycle of the projection. In 

terms of nLx there is no migration, which eliminates the need for this component in forecasting nLx.  

The Hamilton-Perry Method of Population Projection.  The Hamilton-Perry (H-P) method 

(Baker et al., 2017: 251-252) conforms to the fundamental population equation but it does not 

apply the separate components of population change to the age structure at the launch year. Instead, 

it computes cohort change ratios (CCRs) using two counts of the age-structure in question, 

typically five or ten years apart, which directly capture mortality and migration. The fertility 

component uses a “child-adult ratio” from the most recent age structure data or a “child-woman 

ratio” for a projection by gender. It is well-suited for generating a population projection, as well as 

nLx, per the framework found in Swanson et al. (2023):  (1) It corresponds to the dynamics by 

which a population moves forward in time; (2) there is information available relevant to these 

dynamics; (3) the time and resources needed to assemble relevant information and generate a 

projection are minimal; and (4) the information needed from the projection is generated by the H-

P method. 

The H-P method moves a population by age (and gender) from time t to time t+k (the 

projection cycle length) using CCRs computed from data in the two most recent data points (e.g., 

censuses or estimates) with the proviso that the width of the age groups (other than the terminal, 

open-ended age group) can be divided into the length of the projection cycle such that it yields a 

whole number as the quotient.  It consists of two steps. The first uses existing data to develop 

CCRs, and the second applies the CCRs to the cohorts of the launch year population to move them 

into the future. The formula for the first step, the development of a CCR, is: 

                        nCCRx,i = nPx,i,t / nPx-k,i,t-k,                                        [2] 



7 
 

where  

nPx,i,t is the population aged x to x+n in area i at the most recent census/estimate (t),  

nPx-k,i,t-k  is the population aged x-k  to x-k+n in area i at the 2nd  most recent  

   census/estimate (t-k),  

   k is the number of years between the most recent census/estimate at time t  

   for area i and the census/estimate preceding it for area i at time t-k. 

The basic formula for the second step, moving the cohorts of a population into the future, is: 

     nPx+k,i,t+k = (nCCRx,i ) × ( nPx,i,t ),                                [3] 

where  

nPx+k,i,t+k is the population aged x+k to x+k+n in area i at time t+k 

Given the nature of the CCRs, they cannot be calculated for the youngest age group (i.e.,  

ages 0-4 if it is a five-year projection cycle; ages 0-9 if it is a ten-year projection cycle), because 

this cohort came into existence after the census/estimate data collected at time t-k. To project the 

youngest age group, one uses the “Child-Adult Ratio” (CAR), where the number in the youngest 

age group at time t is divided by the number of adults at time t who are of childbearing age (e.g., 

15-44). It does not require any data beyond what is available in the census/estimate sets of 

successive data. 

The CAR equation for projecting the population aged 0-4 is: 

    Population 0-4:  5P 0,t+k = (5P0,t / 30P 15,t) × ( 30P15,t+k)            [4] 

where  
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P is the population,  

t is the year of the most recent census, and 

t+k is the estimation year. 

 In using the H-P method to forecast nLx and in which the youngest age group is 5L0 (ages 

0-4, as is used in this paper), we obviously do not employ a CAR because the number of births in 

a life table is fixed, usually at 100,000 each year, which means that in a five year period (which 

corresponds to the width of abridged life table when 5 year age groups are employed up to the 

terminal, open-ended age group). Thus, 5L0 is comprised of the survivors of these births. As such, 

one can simply take the ratio:  5L0 i,t/5L0 i,t-k, or a variant thereof, as we do in this paper 

Projections of the oldest open-ended age group differ slightly from the H-P projections for 

the age groups beyond age 10 up to the oldest open-ended age group. If, for example, the final 

closed age group is 80-84, with 85+ as the terminal open-ended age group, then calculations for 

the CCRi,x+  require the summation of the three oldest age groups to get the population age 75+ at 

time t-k in a ten forecast cycle (80+ in a five year forecast cycle): 

     ∞CCR75,i,t   = ∞P85,i,t  / ∞P75,i,t-k                                             [5] 

 The formula for estimating the population of 85+ of area i for the year t+k is: 

    ∞P85,i,t+k = (∞CCR75,i,t ) × (∞P75,i,t).                                         [6] 

An issue that is found in the cohort change ratio for the terminal, open-ended age group 

(which in our case is 85 years and over) in a projection where migration is not a component of 

population change is that like the equivalent probability of survival in an abridged life table, deaths 

are not uniformly distributed within the interval (Chiang, 1984: Lahiri, 2018; Swanson, Bryan, and 
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Chow, 2020). This issue tends to exaggerate the length of life for those aged 85 and over in an 

abridged life table and in an H-P projection.  

Before turning to the next section, please note that we used a “Trended CCR” model in this 

paper. It was selected because in a preliminary exploration (the details of which we do not report 

here) we examined two forms of the CCR model, one in which the initial CCRs were kept constant 

and the other in which the initial CCRs were trended to the CCRs five year beyond the launch year 

and found the latter not only to be more accurate but also have fewer constraint violations. The 

trended model is described in detail in the “Evaluation” section. 

Constraints. There are three major constraints in forecasting (or backcasting) nLx. These 

constraints affect any approach designed to forecast nLx that is based on the fundamental 

population equation. First, the births (and deaths) in a life table are typically fixed at 100,000 

annually. Second, nLx cannot exceed this constraint in that it is limited to n*100,000 in a fixed 

width age group of n years. Third, nLx+i  ≤ nLx.   Because the CCR approach (as well as the CCM 

approach) does not recognize these constraints, one must take care to make sure the forecast does 

not violate them. We discuss this in more detail in the “Evaluation” section.  

Transferring Uncertainty.  In regard to transferring uncertainty to a CCR forecast of nLx, the 

approach we take here follows that of Swanson and Tayman (2025a, 2025b). It employs the 

ARIMA (Auto-Regressive Integrated Moving Average) time series method in conjunction with 

work by Espenshade and Tayman (1982), whereby we can transfer the uncertainty information 

found in the ARIMA method’s forecast to the population forecast provided by the CCM approach.  

Before moving on to a description of the Espenshade-Tayman approach, we first clarify 

our use of the term “confidence interval” in regard to forecast uncertainty. It is more common to 
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use the term “forecast interval” or “prediction interval” in the context of forecasting because a 

“confidence interval,” strictly speaking, applies to a sample (Swanson & Tayman, 2014: 204). 

However, underlying the approach we describe herein is the concept of a “superpopulation,” 

which, as discussed later, describes a population that is but one sample of the infinity of 

populations that will result by chance from the same underlying social and economic cause systems 

(Deming and Stephan, 1941). The concept of viewing a forecast as a sample leads us to choose the 

term “confidence interval” rather than forecast interval or prediction interval.  

The uncertainty intervals for the nLx forecasts are based on ARIMA models that forecast 

the uncertainty of population density (total population/land area) for the same horizon years. We 

use "density" because the Espenshade-Tayman (1989) method for translating uncertainty 

information does so from an estimated "rate," which in this case is the "rate" of population 

density. Other denominators could be used in developing such a "rate," such as the ratio of 

population to housing units. However, using the land area as the denominator provides a virtually 

constant denominator over time, thereby reducing the effort in assembling the "rate" data. It also 

serves as a stabilizing element regarding the use of ARIMA in that it dampens the effect of short-

term population fluctuations more effectively than, say, housing units, which also can fluctuate 

over time and are not always in concert with population fluctuations. As should be obvious, the 

data assembled to develop the ARIMA age-specific density forecasts should encompass the base 

data used to develop the nLx forecasts themselves. The case study we present meets this condition 

in that the historical annual record of each of the nLx values cover the period (1959-2024) in 

which both the ARIMA models for generating the age-specific (nLx) density forecasts and the 

CCR nLx forecasts themselves are based. The land area of Estonia is approximately 42,388 km2. 
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The approach we take to generate uncertainty measures follows that of Swanson and 

Tayman (2025a, 2025b), which employs the ARIMA (Auto-Regressive Integrated Moving 

Average) time series method in conjunction with work by Espenshade and Tayman (1982), 

whereby we can transfer the uncertainty information found in the ARIMA method’s forecast to the 

population forecast provided by the H-P approach. As described by Smith, Tayman, and Swanson 

(2001: 172-176), an ARIMA model attempts to uncover the stochastic processes that generate a 

historical data series. The mechanism of this stochastic process is described—based on the patterns 

observed in the data series—and that mechanism forms the basis for developing forecasts.  At its 

heart, the ARIMA time series model is a regression-like forecast method. It was popularized by 

Box and Jenkins (1976) and has been used in analyzing and forecasting business, economic, and 

demographic variables. Examples of its use in demographic forecasting include McNown et al. 

(1995), Pflaumer (1992), Tayman, Smith, and Lin (2007), and Zakria and Muhammad (2009).  

As Smith, Tayman, and Swanson (2001: 172-176) discuss, an ARIMA model attempts to 

uncover the stochastic processes that generate a historical data series. The mechanism of this 

stochastic process is described—based on the patterns observed in the data series—and that 

mechanism forms the basis for developing forecasts. As noted earlier, up to three processes can 

represent the stochastic mechanism: autoregression, differencing, and moving average.    

 The autoregressive process has a memory in the sense that it is based on the correlation of 

each value of a variable with all preceding values. The impact of earlier values is assumed to 

diminish exponentially over time. The number of preceding values explicitly incorporated into 

the model determines its "order." For example, in a first-order autoregressive process, the current 

value is only a function of the immediately preceding value. However, the immediately 

preceding value is also a function of the one before it, which is a function of the one before it, 
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and so forth. Thus, all preceding values influence current values, albeit with a declining impact. 

In a second-order autoregressive process, the current value is explicitly a function of the two 

immediately preceding values; again, all preceding values have an indirect impact. 

 The differencing process creates a stationary time series (i.e., one with constant average 

and variance over time, which, in turn, implies there is no trend in the series). A stationary time 

series is essential for the construction of ARIMA models. When a time series is non-stationary, it 

can often be converted into a stationary time series by calculating differences between values. 

First differences are usually sufficient, but second differences are occasionally required (i.e., 

differences between differences). Logarithmic and square root transformations can also convert 

non-stationary variances to stationary variances. The moving average represents a "shock" to the 

system or an event with a substantial but short-lived impact on the time series pattern. This 

impact has a limited duration, and then time series trends return to normal. The order of the 

moving average process defines the number of time periods affected by the shock. 

The most general ARIMA model is usually written as ARIMA (p, d, q), where p is the 

order of the autoregression, d is the degree of differencing, and q is the order of the moving 

average. (ARIMA models based on time intervals of less than one year may also require a 

seasonal component.)  The first and most subjective step in developing an ARIMA model is to 

identify the values of p, d, and q. The d-value must be determined first because a stationary 

series is required to identify the autoregressive and moving average processes correctly. The 

value of d is the number of times one has to “difference” the series to achieve stationarity 

(usually 0 or 1, but occasionally 2 in data with non-linear growth). The p- and q-values are also 

relatively small (often 0, 1, or 2). The autocorrelation (ACF) and partial autocorrelation patterns 

are used to find the correct values for p and q. For example, a first-order autoregressive model 
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[ARIMA (1, 0, 0)] is characterized by an ACF that declines exponentially and quickly and a 

PACF with a significant spike only at lag 1. Once p, d, and q are determined, maximum 

likelihood procedures are used to estimate the parameters of the ARIMA model. The final step in 

the estimation process is model diagnosis. An adequate ARIMA model will have random 

residuals, no significant values in the ACF, and the smallest possible values for p, d, or q. After a 

successful diagnosis is completed, the ARIMA model is ready to use.  

 In closing this description of the ARIMA process, we note that there are alternatives, 

such as dynamic linear modeling (Sevestre and Trognon, 1996), but we employ ARIMA because 

of our experience with it and its widespread use. 

 In terms of our actual results, the patterns of the autocorrelation (ACF) and partial 

autocorrelation functions (PACF) were used to find the correct values for p and q (Brockwell and 

Davis, 2016: Chapter 3). Each of  the nLx  ARIMAs model have random residuals and the 

smallest possible values for p, d, or q, as determined by the Portmanteau Test (Ljung and Box, 

1979; NCSS, 2024). Using these criteria, each of the selected nLx ARIMA models has been 

determined to be adequate.  We note that there may be other versions that also are "adequate" and 

that further refinement of the selection process can be done (e.g., using the augmented Dickey-

Fuller test (Dickey and Fuller, 1979) to identify the amount of differencing required to achieve a 

stationary time series). We used the ARIMA procedure found in the NCSS Statistical Software 

System (NCSS, 2024) for this set of tasks.  After giving an example of how this approach works, 

again note that we use Estonian data from the Human Mortality Database to generate and 

evaluate nLx  forecasts.   

Here is an example of this process using the 2050 world population projection result 

produced by Swanson and Tayman (2025b: 4-5). 
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 Let P = projected world population (at time ti)  

Let D = forecasted world population density obtained from ARIMA at time ti, and  

Let A = land area of the world (131, 821, 645 square kilometers).  

The 2050 ARIMA density forecast shows 73.02, 76.81, and 80.60 persons per square kilometer, 

respectively, for the land area of the world as a whole (95% Lower Limit of forecasted D, 

forecasted D, and 95% Upper Limit of forecasted D, respectively). The relative widths of the 

Lower and Upper Limits are -0.04938 and 0.04938, respectively. The 2050 world population 

projection found at IDB is 9.7 billion. Multiplying 9.75 billion by -0.04938 and adding this product 

to 9.75 billion yields 9.27 billion, the 95% Lower Limit, and adding the product 9.75 billion × 

0.04938 to 9.7 billion yields 10.23 billion, the 95% Upper Limit of the 2050 world population 

forecast found at IDB. Putting it all together, we can state that one can be 95% certain that the 

2050 world forecast found at IDB is between 9.27 billion and 10.23 billion.   

Underlying the Espenshade-Tayman method is the idea that a sample is taken from a 

population of interest. In this case, the ARIMA results represent the sample, and the CCM forecasts 

represent the population. This interpretation is de rived from the idea of a “super-population” 

(Hartley and Sielken, 1975; Sampath, 2005; Swanson and Tayman (2012, pp. 32–33). This concept 

can be traced back to Deming and Stephan (1941), who observed that even a complete census, for 

scientific generalizations, describes a population that is but one of the infinity of populations that 

will result by chance from the same underlying social and economic cause systems. It is a 

theoretical concept that we use to simplify the application of statistical uncertainty to a population 

forecast that is considered a statistical model in this context. This approach is conceptually and 

mathematically different from the classical frequentist theory of finite population sampling 
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(Hartley and Sielken (1975)), but as pointed out by Ding, Li, and Miratrix (2017), in practical 

terms, these two approaches result in identical variance estimators. As such, we believe that this 

approach is on solid statistical ground. Before moving on, we also note that using the Espenshade-

Tayman method (1982) here is not new. In addition to being employed by Espenshade and Tayman 

(1982), it has been used by Swanson (1989), Roe, Swanson, and Carlson (1992) and Swanson and 

Tayman (2025a, 2025b) in demographic applications.   

Evaluation Using HMD nLx  Data for Estonia. The evaluations utilize annual  nLx  data taken 

from the full HMD set for Estonia (1959 to 2024). The evaluations of the point and interval results 

were launched from 2000 using 2000/1995 CCRs trended to 2005/2000 CCRs. The  model is 

shown in Table 1 while the point and interval evaluations are found in Tables 2 and 3.  

                                                          (TABLE 1 ABOUT HERE) 

The form of the “Trended CCR” model can be seen in Table 1. As noted earlier, it was 

selected because in a preliminary exploration we examined two forms of the CCR model, one in 

which the initial CCRs were kept constant and the other in which the initial CCRs were trended to 

the CCRs five year beyond the launch year and found the latter not only to be more accurate but 

also have fewer constraint violations. In examining this issue, we found that using a weighted 

average between 5L0 found at the point prior to the appearance of  5L0 ≥ 500,000, with at least 80 

percent of the weight on 5L0 at the prior point and the remaining percent on 5L0 at the point of 

initial appearance effectively eliminated this violation through the end of the 20 year forecast 

horizon we employed. We did not encounter any violations of the third constraint once we 

eliminated the initial appearance of the violation of the second constraint.  
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In regard to the violations found in the trended model, the first violation occurred in 2015 

for 5L0 (500,248), which was then adjusted to 499,243 (where 499,243 = .8*5L0 in 2010 (498,573) 

+ .2*5L0 in 2015 (500,248)).  The second violation occurred in 2020 when 5L0 = 500,548 , which 

was adjusted to 499,243 (where 499,243 = .8*adjusted 5L0 in 2015 (499,243 + .2*5L0 in 2020 

(500,584)).  

                                         (TABLE 2 ABOUT HERE) 

In addition to showing the numeric and relative differences between the forecasted e0 and 

the reported e0, the summary measures shown in Table 2 are MALPE (Mean Algebraic Percent 

Error), MAPE (Mean Absolute Percent Error), and the Index of  Dissimilarity Index (ID, also 

known as the Index of Misallocation, IOM).  MALPE provides a view of bias in that if it is 

negative, then, on average, the forecasted values are lower than the reported values while MAPE 

(Swanson and Tayman, 2012: 268-270) shows the mean percent difference between the forecasted 

and reported values regardless of whether or not the forecasts were too high or too low.  ID 

measures the extent that the forecasted values by age differ from the reported values by age. It is 

interpreted as the percent of the forecasted values by age that would have to be re-distributed in 

order to match the reported values by age (Swanson and Tayman, 2012: 273). In assessing these 

measures of error, we use guidelines found in Smith, Tayman, and Swanson (2013: 348-352) and 

Swanson and Tayman, (2012: 281-286) and define substantive errors as at least  +-5% but less than 

+-10% and extreme errors (outliers) as being +-10% or more. 

All of the MALPE and MAPE values are well below 5%. However, the ID measures 

arrange from a low of 9% in 2010 to a high of 12.05 % in 2020. Extreme errors (outliers) are 

neither summarized in Table 2 nor shown elsewhere but we can report that there are only three 

among the 18 age groups across the three evaluation points. All of them occur for age 85+.  In 
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2010, the highest relative error is found for 5L85 (-10.99%); in 2015, the highest error is again for 

∞L85     (-9.9%); and in 2020, it is also for ∞L85 (-20.6%). These errors indicate that the method is 

more likely to have an error among the older age groups than the younger age groups. These errors 

are consistent with both the MALPE values and the differences in e0, which are all negative.  As 

we subsequently discuss, this suggests that over the period of time employed in the ex post facto 

evaluation portion of this case study of Estonia, the method over-estimates mortality on average 

in that it under-estimates nLx on average. 

With the exception of ID (where the 2015 values is higher than the 2020 value), MALPE, 

MAPE and both the absolute and relative difference between the forecasted e0 and reported e0 

increase over time. With the exception of the 2015 ID value, this is consistent with the expectation 

that both uncertainty and errors are expected to increase over time as one moves farther away from 

the forecast launch year (Swanson and Tayman, 2025a, 2025b). 

                                                   (TABLE 3 ABOUT HERE) 

As seen in tables 3a.1, 3b.1, 3c.1 both of the two constraints that relate to the age groups  

are satisfied for all age groups in the 2010, 2015 and 2020 forecasts.  As found in tables 3a.2, 3b.2 

and 3c.2, the 66% confidence intervals encompass the reported 2010, 2015, and 2020 nLx values, 

respectively, 100%, 94.4%, 88.9% of the time. In the 2015 forecast, the one occasion it does not is 

for age 85+ and in the 2020 forecast it does not encompass the reported values for 10-14 and 85+. 

These results are consistent with guidelines found in Swanson and Tayman (2014), wherein t 66% 

CIs should encompass the actual (reported) value at least 66% of the time.  

Continuing with the interval estimates, the 66% “half-widths” ((UL66% - LL66%)/2) 

increase over time as should be the case as we expect uncertainty to increase as one goes further 
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into the future. In 2010, the mean half-width is 24,297; in 2015, it is 30,668, and in 2020, it is 

36,385. Accordingly, the mean half-width in the 2029, 2034, and 2039 forecasts (Tables 6, 7, and  

8) are, respectively 48,067, 52,214, and 56,852. Accordingly, the intervals for e0 also become wider 

over time. Their half-widths for 2010, 2015 and 2020 are, respectively, 4.37, 5.52, and 6.55. 

The 66% confidence intervals generated for T0 and e0 (which recall is equal to 

T0/100,000) started with the nLx forecasts. There are two ways in which the nLx confidence 

intervals  can be used to place confidence intervals around a given T0 (and subsequently for e0 by 

simply dividing the lower limit (LL) and upper limit (UL) found for T0 by 100,000), one is 

informal while the other is formal (Swanson and Tayman, 2014). In the informal approach, one 

would obtain confidence intervals for T0 by adding, respectively,  the LLs and ULs found for the 

nLx values (i.e., the sum of nLx LLs = T0 LL and the sum of nLx ULs =T0 UL). The formal 

approach is called the “error propagation method” by Deming (1950: 127- 134). In different 

forms it has been used by Alho and Spencer (2005), and Espenshade and Tayman (1982), among 

others. This approach involves summing the squared values of the forecasted  intervals, finding 

the square root of the summed forecast interval values and dividing this by the square root of the 

sample size to obtain an estimate of the standard error for the total  forecast. This standard error 

is then multiplied by the total forecast (found by summing the point forecasts) to obtain the 

margin of error. The margin of error is added to and subtracted from the total  forecast to obtain 

the interval associated with the desired level of confidence (66%, 95%, 99%).  Applied to a 

forecast of T0, this approach assumes that the nLx forecasts are independent, which is not an 

unreasonable assumption in that they are not forced to sum to any specified total (i.e., they are 

not “controlled” to an externally produced T0) and each ARIMA-based forecast of “nLx density” 

is a separate model. Swanson and Tayman (2014) report that both the informal and formal 
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approaches generated virtually indistinguishable confidence intervals when aggregated from the 

“bottom-up” forecasts to the total forecast. As such, we employed the informal approach here. 

Keeping in mind that Swanson and Tayman (2012: 275) point out that it is not generally 

possible to produce a population estimate for which all error criteria are simultaneously minimized, 

we find that the evaluation suggests that the method is slightly biased toward under-estimation of 

nLx but is capable of producing  point and interval forecasts that are sufficiently accurate that the 

method should be considered for use. This is with the proviso that evaluations of its performance 

should also continue, both in terms of populations that have mortality patterns similar to Estonia’s 

over the case study period and in terms of population that have different mortality patterns. We 

conclude with the fact that to some extent, the COVID-19 pandemic (approximately January 2020 

to May, 2023) to  may have affected some of our results Rigby and Satija (2023). 

An Example Forecast for Estonia. Because the evaluation data cover a 20 year forecast horizon 

from the launch year of 2000 (with the launch using 2000/1995 CCRs trended to 2005/2000 CCRs 

to forecast nLx for 2010, 2015, and 2020) to the target year of 2020, we use the same horizon for 

the example forecast, which is launched from the most recent data (2024) available  in the Human 

Mortality Database. The result is a forecast launched from 2019 (using 2019/2014 CCRs trended 

to 2024/2019 CCRs to forecast nLx for 2029, 2034, and 2039) to the target year of 2039.  This 

model is found in Table 4. The probabilistic nLx forecasts it generates for 2029, 2034, and 2039 are 

found in tables 5, 6, and 7, respectively.  

                                                (TABLES 4, 5, 6, AND 7  ABOUT HERE) 

In comparing the 66% nLx and e0 confidence intervals from 2029 to 2039, we find that on 

average their half-widths (calculated for ages 0-4 to 85+) increase over time as was the case in 
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regard to the half-widths described in the preceding “Evaluation” section. In terms of the nLx half-

widths, they are for 2029, 2034 and 2039, respectively, 48,067, 53,214 and 56,852; in terms of the 

half-widths for e0, they are, respectively, 8.65, 9.40, and 10.23. As was the case with the point and 

interval evaluations this is encouraging in that as time moves forward we expect uncertainty to 

increase. No violations of constraints 2 and 3 were found. 

There are interesting differences between the forecasts of e0 found, on the one hand in the 

evaluation period, 2010, 2015, ad 2020 , which were launched from 2000 and, on the other, in the 

forecasts for 2029, 2034, and 2039, which were launched from 2024. In the forecasts for 2010, 

2015, and 2020 e0 is, respectively,  74.71, 76.08, and 76.72; while in 2029, 2034, and 2039  they 

are, respectively, 80.60, 79.98, and 79.36.Thus, they increase until 2029 and then show slight 

declines from there to 2034 and 2039. In examining years lived and years remaining by age (15, 

30, 45, 65, and 75) over the period 2010 to 2039, we find that years lived increased at all ages (15, 

30, 45, 65, and 75) from 2010 to 2020 as did years remaining. Between 2020 and 2029, years lived 

decreased at age 15 and age 30, while for 45, 65, and 75, they increased; Between 2029 and 2039, 

we found that both years lived and years remaining decreased at all ages (15, 30, 45, 65, and 75).  

It may be the case that the slight declines represent the possibility that Estonia’s population 

is bumping up against the expiration period of the “biological warranty” (Olshansky and Carnes, 

2009). That is, Estonia’s population is coming up against the limits of human longevity. This 

interpretation is consistent with those on the side of the longevity debate who argue that continued 

increases in human longevity are not likely (see, e.g., Olshansky and Carnes, 2009; Swanson and 

Sanford, 2012) as opposed to those on the other side who argue that we can expect continued 

increases (see, e.g., de Gray, 2002; Kurzweil, 2005; Oeppen and Vaupel, 2002).   
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Discussion. As observed by Tóth (2021: 129), the efficiency of a given mortality 

forecasting approach largely depends on the character of the given time series, which explains 

variation in the usefulness of models with different demographic backgrounds. This observation 

applies not only to Estonia but to all of the other nLx data sets found in HMD, which represent 41 

countries deemed to have high quality mortality data. As a member of the UN’s “Europe” region 

of the world, Estonia can be viewed as a sample of this region, one that is representative in terms 

of low fertility and low mortality, but not so much in terms of low migration. Given our ex post 

facto evaluation and its small population, our results suggest that  the method will likely work in  

countries of a similar size as well as with larger populations that generally share its characteristics. 

It is an open question whether it will work in countries that have different demographic 

backgrounds. Here, again we note that the COVID-19 pandemic (approximately January 2020 to 

May, 2023) to  may have affected some of our results Rigby and Satija (2023). 

 Constructing CCRs from two consecutive period life tables implies that the two life tables 

also represent cohort mortality. For example, in the 2000 and 1995 period life tables used to 

construct the CCRs for the evaluation, 5L24 in 2020 is viewed as the cohort that five years earlier 

was five years younger, 5L20. Given this, none of the CCRs beyond 5L0 should exceed 1.00. 

However, as can be seen in Table 1, the CCR for these two age groups is 1.005507527, as do the 

rest of the CCRs from 5L5 to 5L45. Because period life tables are not constructed with cohorts in 

mind, these “anomalies” can occur when two successive  period life tables are viewed in terms of 

sets of cohorts. This serves to remind us that the CCRs generated from two successive period life 

tables, which is the case in this approach to forecasting nLx, the CCRs represent approximations of  

the mortality experience of different sets of cohorts (e.g., in the period life table at time = t+5,  5L10 

is part of the cohort 5L0 found at time = t-5 as is 5L5 found in the period life table at time = t; 
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whereas in the period life table at time = t+5, 5L15 is part of the cohort 5L0 found at time = t-10 as 

is 5L10 found in the period life table at time = t; and so on). If the approximation are close, such 

that the entire set of CCR approximates the mortality experience of these sets of cohorts, as 

apparently is the case with the CCRs in Table,  the approach should work reasonably well over a 

20 year period, as our evaluation indicates. If they do not, one can expect more violations of the 

constraints, which would require more adjustments than we needed in order to work or lead one to 

the decision not to use this approach if the violations are extensive and pronounced.  

Thus, in regard to the constraints and the simple adjustment we used to overcome violations 

of these constraints, it may be the case that they may not work as well in other populations, 

especially those with different demographic backgrounds. As suggested earlier, a useful starting 

point for the resolution of violations is found in the “floors and ceilings” discussion found in 

Swanson Schlottman, and Schmidt (2010). And, of course, there are the many related tools found 

online that can be used for the purpose of overcoming these violations, such as those found at 

DemoTools (https://timriffe.github.io/DemoTools/index.html) and the Applied Demography 

Toolbox (https://applieddemogtoolbox.github.io/). 

  Unlike the Lee-Carter Method (and its variants) our new method is directly linked  to the 

fundamental demographic equation, the cornerstone of demographic theory, an important 

consideration in developing accurate forecasts (Swanson et al, 2024). Because it forecasts “years 

lived,” this new approach directly yields life expectancy (by age) via the summation of nLx values 

from 85+ back to age group 0-4.  This is not the case with the Lee-Carter Method and its variants, 

which would require life table construction from the forecasted ASDR’s (e.g., Fergany’s method 

(Fergany, 1971)   and the Keyfitz-Frauenthal method (Kintner, 2004: 314-315)). 

https://timriffe.github.io/DemoTools/index.html
https://applieddemogtoolbox.github.io/
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From the perspective of formal demography the CCR approach to forecasting nLx is a 

means of forecasting the age structure and size of the stationary population that is associated with 

a given population (at a given point in time). As such, it can be viewed as a contribution to formal 

demography similar to contributions that demonstrated the CCR approach can used to take a given 

population to stability (Swanson, 2024; Swanson, Baker, and Tedrow, 2016). Viewed in this light, 

the expectation underlying such a forecast is that variance in age at death will continue even if 

those who argue that we can expect substantial improvements that lead to higher longevity levels 

(e.g., de Gray, 2002; Kurzweil, 2005; Oeppen and Vaupel, 2002).  As pointed out by Swanson and 

Tedrow (2021), in order to have zero variance in age at death, all of the members of each birth 

cohort would have to die at the same time, which is so unlikely as to be impossible in most if not 

all species, including humans. Thus, given the other qualifications we have discussed, one could 

expect that the CCR approach to forecasting nLx would work reasonably well in the face of 

dramatic improvements in human longevity. 

Some may argue that the use of a simple forecasting method such as which we employ here 

lacks “real world” predictive ability. To such an argument we reply that Green and Armstrong 

(2015) find that while no evidence shows complexity improves accuracy, complexity remains 

popular among (1) researchers because they are rewarded for publishing in highly ranked journals, 

which favor complexity; (2) methodologists, because complex methods can be used to provide 

information that supports decision makers' plans; and (3) clients, who may be reassured by 

incomprehensibility.  In regard to our simple forecasting method being “extrapolative,” we note 

that virtually all “objective” forecasting methods not only include elements of judgement, but are 

in essence extrapolative and based on historical data, to include ARIMA (Box and Jenkins, 1976; 

Pflaumer, 1992), the Cohort Component Method (Smith, Tayman, and Swanson, 2013: 45-50); 
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structural models (Smith, Tayman, and Swanson, 2013: 215-238), the Lee-Carter mortality 

forecasting method (Lee and Carter, 1992; Basellini, Camarda, and  Booth, 2023), and even what 

many would consider to be a “subjective” method – The Delphi Technique (Dalkey, 1969). 

Moreover, while forecasting comes with uncertainty, as Anatole Romaniuc (2010: 14) observed, 

“Uncertainty should not be a deterrent to exploring the future.” 

In terms of future research, it would be useful to conduct the same type of evaluation for 

different countries. In terms of the Human Mortality Database, this could be done by region of the 

world (as specified by the United Nations, there are five, Africa, Americas, Asia, Europe, and 

Oceania). For example, Australia (a member of the UN’s “Oceania” region of the world), Canada 

(a member of the UN’s “Americas” region of the world, and Japan, a member of the UN’s “Asia” 

region of the world. Countries in these same regions not found in HMD may be found in the Human 

Life-Table Database (HLD) In terms of either the Human Mortality Database (41 countries) or the 

Human Life-Table Database (142 countries)  this could be done by region of the world (as specified 

by the United Nations, there are five, Africa, Americas, Asia, Europe, and Oceania). Among HLD’s 

142 countries, there is a fair contingent from Africa, to include among others, Botswana, 

Cameroon, Egypt, Gambia, Ghana, South Africa, Tanzania and Zambia. Examples for other UN 

regions found in HLD regions include Indonesia, a member of the UN’s “Oceania” region of the 

world, Argentina, a member of the UN’s “Americas” region of the world, and India, a member of 

the UN’s “Asia” region of the world.  

In addition to further examination of the issues underlying the constraint violations, another 

area for future research is to conduct evaluations similar to those employed here in terms of nLx by 

gender. Most life tables are by gender and this would be a natural area for the next step in future 

research. 
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   Table 1. The  Estonian CCR Model using 2000/1995 CCRs Trended to 2005/2000 CCRs 

nLx  nLx nLx 2000/1995 2005/2000 TREND
AGE 1995 2000 2005 CCR CCR IN CCR 
 0-4 491,905 495,239 496,903 1.006777731 1.003359994 0.996605271
 5-9 489,931 493,945 495,991 1.004147142 1.001518459 0.997382173

 10-14 488,919 493,226 495,393 1.006725437 1.0029315 0.996231409
 15-19 487,197 492,183 494,501 1.006675952 1.002585022 0.995936199
 20-24 483,157 489,316 492,104 1.00434937 0.999839491 0.995509651
 25-29 478,144 485,818 488,625 1.005507527 0.998587825 0.9931182
 30-34 471,701 481,540 484,818 1.007102463 0.997941616 0.990903759
  35-39 462,750 475,408 480,016 1.007858792 0.996835154 0.989062319
 40-44 448,901 465,412 472,441 1.005752566 0.993759045 0.988075078
 45-49 430,629 449,868 460,489 1.00215415 0.989422275 0.987295493
 50-54 407,835 429,409 441,805 0.997166935 0.982076965 0.984867158
 55-59 375,809 403,415 417,639 0.989162284 0.972590234 0.98324638
 60-64 339,481 370,022 387,411 0.98460122 0.960328694 0.975347861
 65-69 294,444 328,973 348,749 0.969046869 0.942508824 0.972614281
 70-74 244,418 276,452 300,849 0.938895002 0.914509701 0.974027659
 75-79 185,599 213,398 240,189 0.87308627 0.868827138 0.995121751
 80-84 119,846 144,657 169,435 0.779406139 0.793985886 1.018706225
 85+ 81,056 113,494 135,368 0.564922201 0.524375269 0.928225635
T0 6,088,764 6,323,129 7,302,726

e0 60.89 63.23 73.03  
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      Table 2. Summary Measures of Error: Ex Post Facto Forecasts Launched from 2000. 

 

YEAR MALPE MAPE
INDEX  OF 

DISSIMILARITY
2010 -2.21% 2.25% 9.00%
2015 -3.24% 3.26% 13.21%
2020 -3.30% 3.31% 12.05%  
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          Table 3a.1. 66% Confidence Intervals around the 2010 Trended CCR nLx Forecast  

AGE 66%LL FORECAST 66%UL
 0-4 497,743 498,573 499,402
 5-9 496,728 497,658 499,402

 10-14 496,497 497,445 498,393
 15-19 494,943 496,674 498,404
 20-24 491,107 494,422 497,736
 25-29 483,125 491,409 499,630
 30-34 479,399 487,619 495,840
  35-39 470,618 483,284 495,949
 40-44 457,656 477,020 496,385
 45-49 439,143 467,444 495,744
 50-54 418,076 452,236 486,395
 55-59 386,870 429,695 472,521
 60-64 338,586 401,071 463,555
 65-69 312,879 365,138 417,398
 70-74 268,490 318,934 369,379
 75-79 218,461 261,386 304,311
 80-84 155,984 190,707 225,429
 85+ 127,273 159,831 192,389
T0 7,033,577 7,470,544 7,908,261

e0 70.34 74.71 79.08  
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   Table 3a.2 Number of Times the Forecasted 66% Confidence                                                                                                  
Interval Encompasses the Reported nLx Value for Estonia, 2010 

REPORTED nLx
AGE REPORTED within 66% CI?
 0-4 497,993 1
 5-9 497,286 1

 10-14 496,900 1
 15-19 496,188 1
 20-24 494,662 1
 25-29 492,099 1
 30-34 488,644 1
  35-39 484,656 1
 40-44 479,759 1
 45-49 471,944 1
 50-54 459,493 1
 55-59 441,346 1
 60-64 414,826 1
 65-69 379,498 1
 70-74 335,629 1
 75-79 276,177 1
 80-84 201,286 1
 85+ 179,561 1
T0 7,587,947  

e0 75.88
100.00%  
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Table 3b.1. 66% Confidence Intervals around the 2015 Trended CCR nLx Forecast  

AGE 66%LL FORECAST 66%UL
 0-4 496,287 498,908 499,280
 5-9 496,594 497,992 498,464

 10-14 496,359 497,779 498,274
 15-19 494,967 497,395 498,898
 20-24 490,904 495,264 498,702
 25-29 481,992 492,401 501,827
 30-34 478,745 489,084 498,513
  35-39 468,990 484,774 499,657
 40-44 454,976 478,981 502,096
 45-49 435,584 470,710 504,961
 50-54 415,144 457,836 499,677
 55-59 384,588 438,662 491,919
 60-64 332,597 411,543 489,724
 65-69 309,914 377,000 443,385
 70-74 267,736 333,028 397,702
 75-79 220,838 276,356 331,361
 80-84 161,900 206,981 251,677
 85+ 140,126 183,321 226,175
T0 7,028,242 7,588,013 8,132,291

e0 70.28 75.88 81.32  
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   Table 3b.2 Number of Times the Forecasted 66% Confidence                                                                                                  
Interval Encompasses the Reported nLx Value for Estonia, 2015 

REPORTED nLx
AGE REPORTED within 66% CI?
 0-4 498,628 1
 5-9 498,098 1

 10-14 497,822 1
 15-19 496,981 1
 20-24 495,693 1
 25-29 494,185 1
 30-34 491,115 1
  35-39 487,214 1
 40-44 482,740 1
 45-49 476,040 1
 50-54 466,094 1
 55-59 450,436 1
 60-64 427,064 1
 65-69 394,841 1
 70-74 352,823 1
 75-79 298,818 1
 80-84 229,295 1
 85+ 228,595 0
T0 7,766,482  

e0 77.66
94.44%  
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Table 3c.1. 66% Confidence Intervals around the 2020 Trended CCR nLx Forecast  

AGE 66%LL FORECAST 66%UL
 0-4 497,935 499,243 499,623
 5-9 496,922 498,327 499,623

 10-14 496,555 498,114 498,616
 15-19 495,093 497,729 499,440
 20-24 491,116 495,983 499,927
 25-29 481,406 493,239 504,083
 30-34 478,313 490,071 500,917
  35-39 468,159 486,230 503,397
 40-44 452,864 480,458 507,158
 45-49 432,055 472,645 512,355
 50-54 411,364 461,035 509,849
 55-59 379,574 444,094 506,798
 60-64 326,562 420,131 512,919
 65-69 306,301 386,844 466,668
 70-74 265,128 343,847 421,926
 75-79 221,664 288,569 354,936
 80-84 164,958 218,835 272,306
 85+ 151,289 204,116 256,564
T0 7,017,261 7,679,507 8,327,105

e0 70.17 76.80 83.27  
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  Table 3c.2 Number of Times the Forecasted 66% Confidence                                                                                                  
Interval Encompasses the Reported nLx Value for Estonia, 2020 

REPORTED nLx
AGE REPORTED within 66% CI?
 0-4 499,197 1
 5-9 498,899 1

 10-14 498,649 0
 15-19 498,136 1
 20-24 497,255 1
 25-29 496,047 1
 30-34 494,502 1
  35-39 491,704 1
 40-44 487,561 1
 45-49 481,176 1
 50-54 471,305 1
 55-59 455,676 1
 60-64 433,059 1
 65-69 401,131 1
 70-74 360,633 1
 75-79 309,403 1
 80-84 242,884 1
 85+ 256,986 0
T0 7,874,203  

e0 78.74
88.89%  
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        Table 4. The  Estonian CCR Model using 2019/2014 CCRs Trended to 2024/2019 CCRs 

nLx nLx nLx 2019/2014 2024/2019 TREND

AGE 2014 2019 2024 CCR CCR IN CCR 
 0-4 498,506 499,109 499,245 1.001209614 1.000272486 0.999064003
 5-9 497,930 498,656 498,934 1.000300899 0.999649375 0.999348672

 10-14 497,648 498,391 498,638 1.000925833 0.999963903 0.99903896
 15-19 496,901 497,917 497,954 1.000540543 0.999123178 0.998583401
 20-24 495,135 496,825 496,715 0.999847052 0.997585943 0.997738545
 25-29 492,941 495,378 495,616 1.000490775 0.997566548 0.997077207
 30-34 489,674 493,327 493,933 1.000783055 0.997083036 0.996302875
  35-39 485,770 490,713 491,130 1.00212182 0.995546564 0.993438667
 40-44 481,204 486,987 487,023 1.002505301 0.99248033 0.990000082
 45-49 474,364 480,718 480,855 0.998990033 0.987408288 0.988406546
 50-54 463,299 471,203 471,521 0.993336341 0.980868201 0.98744822
 55-59 447,155 456,335 458,462 0.98496867 0.972960698 0.987808778
 60-64 422,570 435,470 438,654 0.973868122 0.961254342 0.987047753
 65-69 389,250 404,363 409,513 0.956913647 0.940393138 0.982735632
 70-74 346,909 363,401 371,092 0.933592807 0.917719969 0.982998115
 75-79 292,709 310,232 319,331 0.894274867 0.878729007 0.982616239
 80-84 223,280 242,813 252,343 0.829537185 0.813400939 0.980547892
 85+ 215,087 256,712 283,053 0.585609774 0.566644312 0.967614164
T0 7,710,332 7,878,550 7,944,012

e0 77.10 78.79 79.44  
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         Table 5. Probabilistic 2029 nLx Forecast 

AGE 66%LL FORECAST 66%UL
 0-4 497,066 498,914 498,776
 5-9 496,802 498,595 498,703

 10-14 496,607 497,975 498,566
 15-19 494,280 497,226 499,271
 20-24 489,469 495,704 499,801
 25-29 478,376 493,816 505,282
 30-34 475,593 491,958 502,420
  35-39 463,450 487,473 505,383
 40-44 444,412 481,357 508,993
 45-49 418,802 475,796 514,345
 50-54 361,375 468,860 511,410
 55-59 361,375 460,094 513,252
 60-64 304,040 446,663 536,427
 65-69 304,040 423,639 496,684
 70-74 261,395 395,706 466,490
 75-79 231,631 358,302 411,438
 80-84 187,809 307,029 338,573
 85+ 236,655 280,748 427,767
T0 7,003,176 8,059,854 8,733,579

e0 70.03 80.60 87.34  
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       Table 6. Probabilistic 2034 nLx Forecast 

AGE 66%LL FORECAST 66%UL
 0-4 497,059 498,582 498,783
 5-9 496,797 498,414 498,708

 10-14 496,600 498,098 498,573
 15-19 494,120 496,834 499,431
 20-24 489,093 494,904 500,177
 25-29 477,338 493,053 506,315
 30-34 474,560 490,555 503,453
  35-39 461,798 486,554 507,034
 40-44 441,808 478,969 511,597
 45-49 414,807 469,785 518,340
 50-54 354,405 460,835 516,533
 55-59 354,405 450,621 520,222
 60-64 291,527 436,539 548,939
 65-69 291,527 412,787 506,961
 70-74 251,229 382,172 476,655
 75-79 223,829 341,674 419,241
 80-84 182,864 285,774 343,518
 85+ 232,715 322,274 431,707
T0 6,926,480 7,998,423 8,806,187

e0 69.26 79.98 88.06  
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            Table 7. Probabilistic 2039 nLx Forecast 

AGE 66%LL FORECAST 66%UL
 0-4 497,383 498,252 499,121
 5-9 497,122 498,083 499,044

 10-14 496,922 497,917 498,912
 15-19 494,150 496,956 499,762
 20-24 488,626 494,514 500,402
 25-29 476,754 492,257 507,683
 30-34 474,371 489,797 505,223
  35-39 460,983 485,166 509,349
 40-44 440,647 478,066 515,485
 45-49 411,849 467,455 523,061
 50-54 352,201 455,014 523,967
 55-59 352,201 442,908 533,616
 60-64 286,175 427,551 568,926
 65-69 286,175 403,431 527,878
 70-74 246,933 372,382 497,832
 75-79 222,150 329,987 437,825
 80-84 183,936 272,512 361,088
 85+ 230,346 333,389 436,431
T0 6,898,921 7,935,635 8,945,603

e0 68.99 79.36 89.46  
 


